Prime 3-Uniform Hypergraphs

نویسندگان

چکیده

Given a 3-uniform hypergraph H, subset M of V(H) is module H if for each $$e\in E(H)$$ e ∈ E ( ) such that $$e\cap M\ne \emptyset$$ ∩ ≠ ∅ and $$e\setminus \ , there exists $$m\in M$$ m M=\{m\}$$ = { } every $$n\in n we have $$(e\setminus \{m\})\cup \{n\}\in ∪ . For example, $$\emptyset$$ $$\{v\}$$ v where $$v\in V(H)$$ V are modules called trivial. A prime all its hypergraph, study prime, induced subhypergraphs. Our main result is: given with $$|V(H)|\ge 4$$ | ≥ 4 exist $$v,w\in w $$H-\{v,w\}$$ - prime.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Partitioning 3-uniform hypergraphs

Bollobás and Thomason conjectured that the vertices of any r-uniform hypergraph with m edges can be partitioned into r sets so that each set meets at least rm/(2r − 1) edges. For r = 3, Bollobás, Reed and Thomason proved the lower bound (1− 1/e)m/3 ≈ 0.21m, which was improved to 5m/9 by Bollobás and Scott (while the conjectured bound is 3m/5). In this paper, we show that this Bollobás-Thomason ...

متن کامل

Matchings in 3-uniform hypergraphs

We determine the minimum vertex degree that ensures a perfect matching in a 3-uniform hypergraph. More precisely, suppose thatH is a sufficiently large 3-uniform hypergraph whose order n is divisible by 3. If the minimum vertex degree of H is greater than ( n−1 2 )

متن کامل

Decompositions of complete 3-uniform hypergraphs into small 3-uniform hypergraphs

In this paper we consider the problem of determining all values of v for which there exists a decomposition of the complete 3-uniform hypergraph on v vertices into edge-disjoint copies of a given 3-uniform hypergraph. We solve the problem for each 3-uniform hypergraph having at most three edges and at most six vertices, and for the 3-uniform hypergraph of order 6 whose edges form the lines of t...

متن کامل

On 3-uniform hypergraphs without linear cycles∗

We explore properties of 3-uniform hypergraphs H without linear cycles. It is surprising that even the simplest facts about ensuring cycles in graphs can be fairly complicated to prove for hypergraphs. Our main results are that 3-uniform hypergraphs without linear cycles must contain a vertex of strong degree at most two and must have independent sets of size at least 2|V (H)| 5 .

متن کامل

Codegree Thresholds for Covering 3-Uniform Hypergraphs

Given two 3-uniform hypergraphs F and G = (V,E), we say that G has an F -covering if we can cover V with copies of F . The minimum codegree of G is the largest integer d such that every pair of vertices from V is contained in at least d triples from E. Define c2(n, F ) to be the largest minimum codegree among all n-vertex 3-graphs G that contain no F -covering. Determining c2(n, F ) is a natura...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Graphs and Combinatorics

سال: 2021

ISSN: ['1435-5914', '0911-0119']

DOI: https://doi.org/10.1007/s00373-021-02391-w